Extensions 1→N→G→Q→1 with N=C3xC9 and Q=C22xC4

Direct product G=NxQ with N=C3xC9 and Q=C22xC4
dρLabelID
C2xC6xC36432C2xC6xC36432,400

Semidirect products G=N:Q with N=C3xC9 and Q=C22xC4
extensionφ:Q→Aut NdρLabelID
(C3xC9):1(C22xC4) = C4xS3xD9φ: C22xC4/C4C22 ⊆ Aut C3xC9724(C3xC9):1(C2^2xC4)432,290
(C3xC9):2(C22xC4) = C2xDic3xD9φ: C22xC4/C22C22 ⊆ Aut C3xC9144(C3xC9):2(C2^2xC4)432,304
(C3xC9):3(C22xC4) = C2xC18.D6φ: C22xC4/C22C22 ⊆ Aut C3xC972(C3xC9):3(C2^2xC4)432,306
(C3xC9):4(C22xC4) = C2xS3xDic9φ: C22xC4/C22C22 ⊆ Aut C3xC9144(C3xC9):4(C2^2xC4)432,308
(C3xC9):5(C22xC4) = S3xC2xC36φ: C22xC4/C2xC4C2 ⊆ Aut C3xC9144(C3xC9):5(C2^2xC4)432,345
(C3xC9):6(C22xC4) = D9xC2xC12φ: C22xC4/C2xC4C2 ⊆ Aut C3xC9144(C3xC9):6(C2^2xC4)432,342
(C3xC9):7(C22xC4) = C2xC4xC9:S3φ: C22xC4/C2xC4C2 ⊆ Aut C3xC9216(C3xC9):7(C2^2xC4)432,381
(C3xC9):8(C22xC4) = Dic3xC2xC18φ: C22xC4/C23C2 ⊆ Aut C3xC9144(C3xC9):8(C2^2xC4)432,373
(C3xC9):9(C22xC4) = C2xC6xDic9φ: C22xC4/C23C2 ⊆ Aut C3xC9144(C3xC9):9(C2^2xC4)432,372
(C3xC9):10(C22xC4) = C22xC9:Dic3φ: C22xC4/C23C2 ⊆ Aut C3xC9432(C3xC9):10(C2^2xC4)432,396


׿
x
:
Z
F
o
wr
Q
<